The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 1 1 1 1 1 1 2 1 2 1 2X 2 1 1 1 1 0 2 2 0 2 0 2X+2 0 2 0 0 2 2X+2 2X 2X 2X+2 2 2X 2X 2X+2 2 0 2X 2 2X+2 0 2X 2 2X+2 2X 0 2X+2 2 2X 0 2X+2 2 2X 0 2X+2 2 2 2 2X+2 2X+2 2X 0 2X+2 2 0 0 2X 2X 2X 2X 0 0 2 2 2X+2 2X+2 2X+2 2X+2 2 2 0 0 2X 2X 0 2X 2 2X+2 0 2X+2 0 2X 2X+2 2 2 2X 0 2X+2 2X 2 2 2X 2 0 0 0 0 2X+2 2 2X 2 2X+2 2X 2X 2 2X+2 2X 0 2X+2 2 0 0 2 2 0 2X 2X+2 2X+2 2X 2X 2X+2 2X+2 2X 0 2 2 0 2 2X+2 0 2X 2 2X+2 2X+2 2 2X+2 2 2X 0 0 2X 2X 0 2 2X+2 2X+2 2 2 2X+2 2X+2 2 0 2X 2X 0 0 2X 2X 0 0 2 2 0 2X 2 2X+2 0 2X 2X+2 2X+2 2 2X+2 2X+2 2X 2X 0 0 2X+2 2 2 generates a code of length 85 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 84. Homogenous weight enumerator: w(x)=1x^0+183x^84+66x^88+5x^92+1x^120 The gray image is a code over GF(2) with n=680, k=8 and d=336. This code was found by Heurico 1.16 in 1.97 seconds.